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1D & 2D MHD problems

1D problem

Brio-Wu’s 1.5D ideal MHD problem.
All variables are functions of x only.

Vector quantities with perpendicular
direction.

B is constant.

V-B=0 is trivial.

Nonlinear, 5-component PDE, 5
conserved variables.

5 wave Riemann problem.

e.g., Fast rarefaction wave, slow
compound wave
(shock+rarefaction), contact
discontinuity, slow shock, fast
rarefaction wave.

2D problem

Orszag-Tang’'s MHD vortex problem.
One more variable in y direction.

Vector quantities with normal and
tangential directions for each
sweeps.

B_ is not a constant.

X

V-B=0 is anew restriction!
7/ wave Riemann problem.

e.g., Fast rarefaction wave, Alfven
wave, slow rarefaction wave, contact
discontinuity, slow shock, Alfven
wave, fast shock wave.

More complicated wave structures
with a numerical restriction.




Numerical MHD

Three approaches for ensuring V-B =0 with high order Godunov
types solver:

8-wave (Powell et al., 1999)
can spoil conservation (incorrect jump conditions across discont.)

keeps V-B =0 to the accuracy of truncation error, i.e., requires
zero divergence to be satisfied to the 2" order accuracy in IC &
BC.

Projection scheme (Brackbill and Barnes, 1980, Crockett et al., 2003)
keeps V- B =0 to the accuracy of the Poisson solver.
accurate but expensive.

CT scheme using staggered algorithm (Evans and Hawley, 1988,
Balsara and Spicer, 1999)

maintains V-B =0 to the accuracy of machine round off errors.
same order of accuracy as the projection scheme.
Extensive tests and comparisons are made by Toth [3].




Conservation Form of Ideal MHD Equations (2D)

The ideal MHD governing equations in 2D :
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Staggered Mesh Algorithm

2D staggered grid topology to
ensure V-B=0.

Upwinded fluxes F collocated
at centers of cell interfaces.

A=_-VxA atcell corners.
Algorithm:
IC&BCfor V-b=0

F from high order Godunov

—

Update E using F

Update b using Maxwell’s
3rd eqn: B
d0b+V-E=0

Update B by interpolating b




Staggered Mesh Algorithm — cont’d

Using the staggered mesh algorithm, one can maintain the discretized numerical
divergence of magnetic fields remain zero!
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Important constraint in MHD problems whose dimensionality > 1.

V-B#0 canbe generated even with solenoidal IC & BC, due to inherent non-
linearities of many shock-capturing numerical methods.

If not controlled then the build-up of non-zero magnetic fields will yield numerical
instability without any physical meanings.




Riemann Solver for Nonlinear MHD

Required for Godunov type methods.

Approximate Riemann solvers are faster and efficient.
upwind differencing scheme.
Roe’s linearization procedure.

Construction of a Roe matrix, A .
Analytical form is available at ¥ =2 (Brio & Wu [5]).
Simple arithmetic averaging for ¥ #2 .

Use eigensystem of a Roe matrix to compute numerical fluxes at
cell interface centers.




Roe’s Linearization

—

Properties of K :

Hyperbolicity: (may not be strictly hyperbolic)

A Is required to have real eigenvalues and linearly
Independent right eigenvectors.

Consistency with exact Jacobian:

. %)
AU, ,U)=AlU,)=—
Uy, Uy)=AU,) i
Conservation across discontinuities:

F(U,)-F(U,)=A(U,-U,)




Eigenstructure of MHD equation

o

7 wave speeds & 8 states.

Slow / fast signals: might be shocks or rarefactions.
Entropy wave: contact discontinuity.

Eigenvalues /ﬁLi (wave speeds) may not be distinct.
Right eigenvectors 7}, (path taken in the phase space).

Left eigenvectors [, (charcteristic).




Intercell Fluxes of the Riemann Problem

U, tfx<x,,,;

Given  U(x,t') = {

U, itx>x,,,, ,
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First order Godunov method (FOG)

Piecewise distributed data at time level n.

1

. : : o1 .
Solves Riemann problems at each intercell boundaries =3 & z+5.




MUSCL-Hancock Method
- High order Godunov method (HOG)

A R

Data reconstruction: piecewise distributed data at time level n,

”,-L =u, -lZi & ul.R =u, +1A
2 2

i

~ max[O,min(ﬁAH/z A ), min(A,_,, ﬁAm/z )], Ay >0
min[0, lnaX(ﬁAi—l/Z J Ai+1/2 ), maX(Ai—l/2 J BA/+1/2 )], A,:+1/2 <0

Time evolution:

H]

Riemann problem with piecewise constant data: (i2,",1,",)




Dimensional splitting scheme in 2D

accurate scheme: (Strang)

PDE: U,+F(), +G(U), =0
IC : U(xyt")=U"
U

dimensional splitting

U

PDE: U,+F(U),=0] & .
c = = U""? (x-sweep, X" - operator)

= U"" (y-sweep, Y -operator)

PDE: U, +G(U), = o} y

IC . Un+l/2




Dimensional splitting scheme in 2D-cont’d

accurate scheme with 50% more work: (Strang)

Un-l—l — XAI/ZYAtxAt/2Un

or

Un-l—l — YAZ‘/ZxAtYAt/zUH




MHD Code at a glance

Solves 1D and 2D MHD problems in the Cartesian grids.
Written in Fortran 90 , started from scratch.
14 sub-modules with a driver (mhd.f90) routine, one runtime parameter file (mhd.init).
One can from:
Outflow & periodic BC.
1st and 2" order (MUSCL-Hancock) Godunov methods.
w/ or w/o TVD, w/ or w/o entropy fix, two different averaging schemes.
Two different eigenstructures (Roe-Balsara & Ryu-Jones).

Control of a parameter B for different slope limiter functions (e.g., MINMOD,
SUPERBEE).

1st and 2" order dimensional splitting schemes.
3 different solution levels for 1D and 4 different levels for 2D.
Restart capability.
Compile flags:
in usual runs

in debug mode




1D Brio-Wu problem - Verification

o FLASH
— MUSCL-Hancock

(p.p.B,), =(1L1),
(p,p,B, ) =(012501,-1),
B =0.75

U, =U g =U, =U,,= 0

=20




1D Brio-Wu problem — Grid resolution test

— N=100
— N=200

N=400
—— N=800

Increasing grid
resolution




1D Brio-Wu problem — Sol’n level test (N=200)

— FOG

— FOG+TVD
MUSCL+TVD

— High Res.




2D Orszag-Tang problem - Verification study

p at t=0.5, CFL=0.8, 400x400 : MUSCL + TVD + 2nd order splitting p att=0.5, CFL=0.8, 400x400 : MUSCL + TVD + 2nd order splitting
1 1 \

SNA

p at t=0.5, CFL=0.8, 400x400 FLASH




2D Orszag-Tang problem - Verification study

v-B at t=0.5, CFL=0.8, 400x400 FLASH

Well validated results.

Divergence free of magnetic fields are obtained using the staggered mesh algorithm, while
nonzero values are evident in the FLASH results (8-wave scheme).




2D Orszag-Tang problem
— Sol’n level test (200x200)

p at t=0.5, CFL=0.8, 200x200 : FOG + 1st order splitting p at t=0.5, CFL=0.8, 200x200 : FOG + TVD + 1st order splitting

- ; N |




CPU Comparisons

Average values of CPU time on a linux workstation of Pentium 4 2.4 GHz (2GB memory).

Grids MHD code FLASH code I MHD code
Il FLASH code

50 x 50 6 sec 12 sec

100 x 100 49 sec 76 sec

CPU time (min)

200 x 200 356 sec 687 sec

400 x 400 5,512 sec 3,192 sec 7 ﬂl
562 17);2 2c‘)o2 4602




2D Orszag-Tang problem — movie

Density movie on 400x400 high resolution.

CFL=0.8.

2"d order Godunov MUSCL-Hancock scheme.

2nd order accurate dimensional splitting in alternating order.

Enjoy!




Conclusion & Future works

Successful implementations of 1D and 2D MHD solver.

Codes are well validated for well known bench marked problems, such as 1D Brio-Wu
MHD shock tube problem and 2D Orszag-Tang MHD vortex problem.

Compares well with the FLASH results.
Performed systematic studies in data analysis.

Keeps divergence of magnetic fields remain zero up to machine round-off errors
throughout calculations, even for long period of time.

Pure hydrodynamic problem can be considered as a limiting case.

Implement other scheme (Crockett, Colella, et al., 2003) :
Unsplit scheme for accuracy
Projection method / Poisson solver

3D MHD turbulence problem:
Parallelization

AMR
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